47 research outputs found

    Design and synthesis of lipid-mimetic cationic iridium complexes and their liposomal formulation for in vitro and in vivo application in luminescent bioimaging

    Get PDF
    Two iridium [Ir(NC)(2)(NN)](+) complexes with the diimine NN ligand containing a long polymethylene hydrophobic chain were synthesized and characterized by using NMR and ESI mass-spectrometry: NN - 2-(1-hexadecyl-1H-imidazol-2-yl)pyridine, NC - methyl-2-phenylquinoline-4-carboxylate (Ir1) and 2-phenylquinoline-4-carboxylic acid (Ir2). These complexes were used to prepare the luminescent PEGylated DPPC liposomes (DPPC/DSPE-PEG2000/Ir-complex = 95/4.5/1 mol%) using a thin film hydration method. The narrowly dispersed liposomes had diameters of about 110 nm. The photophysics of the complexes and labeled liposomes were carefully studied. Ir1 and Ir2 give red emission (lambda(em) = 667 and 605 nm) with a lifetime in the microsecond domain and quantum yields of 4.8% and 10.0% in degassed solution. Incorporation of the complexes into the liposome lipid bilayer results in shielding of the emitters from interaction with molecular oxygen and partial suppression of excited state nonradiative relaxation due to the effect of the relatively rigid bilayer matrix. Delivery of labeled liposomes to the cultured ARPE-19 cells demonstrated the usefulness of Ir1 and Ir2 in cellular imaging. Labeled liposomes were then injected intravitreally into rat eyes and imaged successfully with optical coherence tomography and funduscopy. In conclusion, iridium complexes enabled the successful labeling and imaging of liposomes in cells and animals.Peer reviewe

    Luminescence Solvato- and Vapochromism of Alkynyl-Phosphine Copper Clusters

    Get PDF
    The reaction of [Cu(NCMe)4][PF6] with aromatic acetylenes HC2R and triphosphine 1,1,1-tris(diphenylphosphino)methane in the presence of NEt3 results in the formation of hexanuclear Cu(I) clusters with the general formula [Cu6(C2R)4{(PPh2)3CH}2][PF6]2 (R = 4-X-C6H4 (1-5) and C5H4N (6); X = NMe2 (1), OMe (2), H (3), Ph (4), CF3 (5)). The structural motif of the complexes studied consists of a Cu6 metal core supported by two phosphine ligands and stabilized by σ- and π-coordination of the alkynyl fragments (together with coordination of pyridine nitrogen atoms in cluster 6). The solid state structures of complexes 2-6 were determined by single crystal XRD analysis. The structures of the complexes in solution were elucidated by (1)H, (31)P, (1)H-(1)H COSY NMR spectroscopy, and ESI mass spectrometry. Clusters 1-6 exhibit moderately strong phosphorescence in the solid state with quantum yields up to 17%. Complexes 1-5 were found to form solvates (acetone, acetonitrile) in the solid state. The coordination of loosely bound solvent molecules strongly affects emission characteristics and leads to solvato- and vapochromic behavior of the clusters. Thus, solvent-free and acetonitrile solvated forms of 3 demonstrate contrasting emission in orange (615 nm) and blue (475 nm) regions, respectively. The computational studies show that alkynyl-centered IL transitions mixed with those of MLCT between the Cu6 metal core and the ligand environment play a dominant role in the formation of excited states and can be considerably modulated by weakly coordinating solvent molecules leading to luminescence vapochromism.This research has been supported by St. Petersburg State University Research Grant 0.37.169.2014, and Russian Foundation for Basic Research Grants 13-03-00970, 14-03-32077, and 13-03-12411. Academy of Finland (Grant 268993/2013, I.O.K), University of Eastern Finland (strategic funding—Russian–Finnish collaborative project), is also gratefully acknowledged. The work was carried out using equipment of the Analytical Center of Nano- and Biotechnologies of SPbSPU with financial support of the Ministry of Education and Science of Russian Federation; Centers for Magnetic Resonance, X-ray Diffraction Studies, Chemical Analysis and Materials Research, Optical and Laser Materials Research; and Computer Center of St. Petersburg State University

    Synthesis, structural characterization, photophysical properties and theoretical analysis of gold(I) thiolate-phosphine complexes

    Get PDF
    11 páginas, 9 figuras, 2 tablas, 2 esquemas.-- et al.A series of luminescent dinuclear neutral complexes of stoichiometry [(AuSPh)2(PPh2-(C6H4)n-PPh2)] (n = 1, 2, 3) as well as their tetranuclear cationic derivatives [(Au2SPh)2(PPh2-(C6H4)n-PPh2)2](PF6)2 are reported. Their crystal structures have been elucidated by X-ray studies. These studies indicate that, for the dinuclear species, only when n = 1 the molecules exhibit intermolecular aurophilic interactions. None of the tetranuclear species crystallizes in their molecular form, due to the formation of aggregates through Au***Au interactions. The origin of the luminescence has been analyzed by computational studies indicating that the presence or absence of aurophilic interactions does not affect the luminescent behavior and that intraligand charge transfer processes which involve the thiolate and the diphosphine are responsible for the emissions. The result is in contrast with the thiolate–gold charge transfer processes which dominate the photophysics of gold-thiolate compounds and reveals the influence of the phenylene spacers in the emissive behavior of these compounds.Financial support fromthe Academy of Finland (I.O.K.),Russian Foundation for Basic Research (grants 09-03-12309-CSIC-a and 09-03-12309) is gratefully acknowledged. We also thank the Dirección General de Investigación Científica y T´ecnica (CTQ2007- 67273-C02-01), the CSIC/Russian Foundation for BasicResearch (RFBR) (N 2008RU0065) for financial support and to the Supercomputing Center of Galicia (CESGA-CSIC) for providing Access to the FINIS TERRAE System.Peer reviewe

    pH-Responsive N^C-Cyclometalated Iridium(III) Complexes: Synthesis, Photophysical Properties, Computational Results, and Bioimaging Application

    No full text
    Herein we report four [Ir(N^C)2(L^L)]n+, n = 0,1 complexes (1–4) containing cyclometallated N^C ligand (N^CH = 1-phenyl-2-(4-(pyridin-2-yl)phenyl)-1H-phenanthro[9,10-d]imidazole) and various bidentate L^L ligands (picolinic acid (1), 2,2′-bipyridine (2), [2,2′-bipyridine]-4,4′-dicarboxylic acid (3), and sodium 4,4′,4″,4‴-(1,2-phenylenebis(phosphanetriyl))tetrabenzenesulfonate (4). The N^CH ligand precursor and iridium complexes 1–4 were synthesized in good yield and characterized using chemical analysis, ESI mass spectrometry, and NMR spectroscopy. The solid-state structure of 2 was also determined by XRD analysis. The complexes display moderate to strong phosphorescence in the 550–670 nm range with the quantum yields up to 30% and lifetimes of the excited state up to 60 µs in deoxygenated solution. Emission properties of 1–4 and N^CH are strongly pH-dependent to give considerable variations in excitation and emission profiles accompanied by changes in emission efficiency and dynamics of the excited state. Density functional theory (DFT) and time-dependent density functional theory (TD DFT) calculations made it possible to assign the nature of emissive excited states in both deprotonated and protonated forms of these molecules. The complexes 3 and 4 internalize into living CHO-K1 cells, localize in cytoplasmic vesicles, primarily in lysosomes and acidified endosomes, and demonstrate relatively low toxicity, showing more than 80% cells viability up to the concentration of 10 µM after 24 h incubation. Phosphorescence lifetime imaging microscopy (PLIM) experiments in these cells display lifetime distribution, the conversion of which into pH values using calibration curves gives the magnitudes of this parameter compatible with the physiologically relevant interval of the cell compartments pH

    Luminescence solvato-and vapochromism of alkynyl-phosphine copper clusters

    No full text
    The reaction of [Cu(NCMe)4][PF6] with aromatic acetylenes HC2R and triphosphine 1,1,1-tris(diphenylphosphino)methane in the presence of NEt3 results in the formation of hexanuclear Cu(I) clusters with the general formula [Cu6(C2R)4{(PPh2)3CH}2][PF6]2 (R = 4-X-C6H4 (1–5) and C5H4N (6); X = NMe2 (1), OMe (2), H (3), Ph (4), CF3 (5)). The structural motif of the complexes studied consists of a Cu6 metal core supported by two phosphine ligands and stabilized by σ- and π-coordination of the alkynyl fragments (together with coordination of pyridine nitrogen atoms in cluster 6). The solid state structures of complexes 2–6 were determined by single crystal XRD analysis. The structures of the complexes in solution were elucidated by 1H, 31P, 1H–1H COSY NMR spectroscopy, and ESI mass spectrometry. Clusters 1–6 exhibit moderately strong phosphorescence in the solid state with quantum yields up to 17%. Complexes 1–5 were found to form solvates (acetone, acetonitrile) in the solid state. The coordination of loosely bound solvent molecules strongly affects emission characteristics and leads to solvato- and vapochromic behavior of the clusters. Thus, solvent-free and acetonitrile solvated forms of 3 demonstrate contrasting emission in orange (615 nm) and blue (475 nm) regions, respectively. The computational studies show that alkynyl-centered IL transitions mixed with those of MLCT between the Cu6 metal core and the ligand environment play a dominant role in the formation of excited states and can be considerably modulated by weakly coordinating solvent molecules leading to luminescence vapochromism

    Rhenium(I) Block Copolymers Based on Polyvinylpyrrolidone: A Successful Strategy to Water-Solubility and Biocompatibility

    No full text
    A series of diphosphine Re(I) complexes Re1–Re4 have been designed via decoration of the archetypal core {Re(CO)2(N^N)} through the installations of the phosphines P0 and P1 bearing the terminal double bond, where N^N = 2,2′-bipyridine (N^N1), 4,4′-di-tert-butyl-2,2′-bipyridine (N^N2) or 2,9-dimethyl-1,10-phenanthroline (N^N3) and P0 = diphenylvinylphosphine, and P1 = 4-(diphenylphosphino)styrene. These complexes were copolymerized with the corresponding N-vinylpyrrolidone-based Macro-RAFT agents of different polymer chain lengths to give water-soluble copolymers of low-molecular p(VP-l-Re) and high-molecular p(VP-h-Re) block-copolymers containing rhenium complexes. Compounds Re1–Re4, as well as the copolymers p(VP-l-Re) and p(VP-h-Re), demonstrate phosphorescence from a 3MLCT excited state typical for this type of chromophores. The copolymers p(VP-l-Re#) and p(VP-h-Re#) display weak sensitivity to molecular oxygen in aqueous and buffered media, which becomes almost negligible in the model physiological media. In cell experiments with CHO-K1 cell line, p(VP-l-Re2) and p(VP-h-Re2) displayed significantly reduced toxicity compared to the initial Re2 complex and internalized into cells presumably by endocytic pathways, being eventually accumulated in endosomes. The sensitivity of the copolymers to oxygen examined in CHO-K1 cells via phosphorescence lifetime imaging microscopy (PLIM) proved to be inessential

    Design of a Bimetallic Au/Ag System for Dechlorination of Organochlorides: Experimental and Theoretical Evidence for the Role of the Cluster Effect

    No full text
    The experimental study of dechlorination activity of a Au/Ag bimetallic system has shown formation of a variety of chlorinated bimetallic Au/Ag clusters with well-defined Au:Ag ratios from 1:1 to 4:1. It is the formation of the Au/Ag cluster species that mediated C–Cl bond breakage, since neither Au nor Ag species alone exhibited a comparable activity. The nature of the products and the mechanism of dechlorination were investigated by ESI-MS, GC-MS, NMR, and quantum chemical calculations at the M06/6-311G­(d)&SDD level of theory. It was revealed that formation of bimetallic clusters facilitated dechlorination activity due to the thermodynamic factor: C–Cl bond breakage by metal clusters was thermodynamically favored and resulted in the formation of chlorinated bimetallic species. An appropriate Au:Ag ratio for an efficient hydrodechlorination process was determined in a joint experimental and theoretical study carried out in the present work. This mechanistic finding was followed by synthesis of molecular bimetallic clusters, which were successfully involved in the hydrodechlorination of CCl<sub>4</sub> as a low molecular weight environment pollutant and in the dechlorination of dichlorodiphenyl­trichloroethane (DDT) as an eco-toxic insecticide. High activity of the designed bimetallic system made it possible to carry out a dechlorination process under mild conditions at room temperature
    corecore